Pneumococcal Extracellular Vesicles Modulate Host Immunity

EVs; Gram-positive bacteria; Streptococcus pneumoniae; alternative activation pathway; extracellular vesicles; host-pathogen interactions; immune response; macrophage signaling; pathogenesis.
浏览次数:2 分享:

Saigopalakrishna S Yerneni, Sarah Werner, Juliana H Azambuja, Nils Ludwig, Rory Eutsey, Surya D Aggarwal, Peter C Lucas, Nathanael Bailey, Theresa L Whiteside, Phil G Campbell, N Luisa Hiller

  • mBio
  • 6.4
  • 2021 Aug 31;12(4):e0165721.
  • Mouse
  • 抗体芯片
  • 呼吸系统
  • 呼吸系统
  • 上皮细胞
  • 肺炎
  • CXCL13/BLC/BCA-1,IL-5,M-CSF,C5a,IL-6,CCL2/JE/MCP-1,G-CSF,IL-7,CCL12/MCP-5,GM-CSF,IL-10,CXCL9/MIG,CCL1/I-309,IL-12 p70,CCL3/MIP-1 alpha,CCL11/Eotaxin,IL-13,CCL4/MIP-1 beta,ICAM-1,IL-16,CXCL2/MIP-2,IFN-gamma,IL-17,CCL5/RANTES,IL-1 alpha/IL-1F1,IL-23,CXCL12/SDF-1,IL-1 beta/IL-1F2,IL-27,CCL17/TARC,IL-1ra/IL-1F3,CXCL10/IP-10,TIMP-1,IL-2,CXCL11/I-TAC,TNF-alpha,IL-3,CXCL1/KC,TREM-1,IL-4

相关货号

LXAM040-2

Abstract

Extracellular vesicles (EVs) have recently garnered attention for their participation in host-microbe interactions in pneumococcal infections. However, the effect of EVs on the host immune system remain poorly understood. Our studies focus on EVs produced by Streptococcus pneumoniae (pEVs), and reveal that pEVs are internalized by macrophages, T cells, and epithelial cells. In vitro, pEVs induce NF-κB activation in a dosage-dependent manner and polarize human macrophages to an alternative (M2) phenotype. In addition, pEV pretreatment conditions macrophages to increase bacteria uptake and such macrophages may act as a reservoir for pneumococcal cells by increasing survival of the phagocytosed bacteria. When administered systemically in mice, pEVs induce cytokine release; when immobilized locally, they recruit lymphocytes and macrophages. Taken together, pEVs emerge as critical contributors to inflammatory responses and tissue damage in mammalian hosts. IMPORTANCE Over the last decade, pathogen-derived extracellular vesicles (EVs) have emerged as important players in several human diseases. Therefore, a thorough understanding of EV-mediated mechanisms could provide novel insights into vaccine/therapeutic development. A critical question in the field is: do pathogen-derived EVs help the pathogen evade the harsh environment in the host or do they help the host to mount a robust immune response against the pathogen? This study is a step towards answering this critical question for the Gram-positive pathogen, Streptococcus pneumoniae. Our study shows that while S. pneumoniae EVs (pEVs) induce inflammatory response both in vitro and in vivo, they may also condition the host macrophages to serve as a reservoir for the bacteria.Keywords:EVs; Gram-positive bacteria; Streptococcus pneumoniae; alternative activation pathway; extracellular vesicles; host-pathogen interactions; immune response; macrophage signaling; pathogenesis.
金课堂之文献解析 文献原文请点击

技术文章 更多

    研究领域 更多

      热点文献