SC3: consensus clustering of single-cell RNA-seq data

single cell sequencing;SNS;单细胞测序;单细胞多组学
浏览次数:17 分享:

Vladimir Yu Kiselev, Kristina Kirschner, Michael T Schaub, Tallulah Andrews, Andrew Yiu, Tamir Chandra, Kedar N Natarajan, Wolf Reik, Mauricio Barahona, Anthony R Green, Martin Hemberg

  • Nat Methods
  • 2017
  • 47.99
  • 14(5):483-486.
  • Human
  • 单细胞测序
  • Examination of three different patients with myeloproloferative disease
  • 技术分享
  • 192
  • GSE79102

Abstract

Single-cell RNA-seq enables the quantitative characterization of cell types based on global transcriptome profiles. We present single-cell consensus clustering (SC3), a user-friendly tool for unsupervised clustering, which achieves high accuracy and robustness by combining multiple clustering solutions through a consensus approach (http://bioconductor.org/packages/SC3). We demonstrate that SC3 is capable of identifying subclones from the transcriptomes of neoplastic cells collected from patients.
金课堂之文献解析 文献原文请点击

技术文章 更多

    研究领域 更多

      热点文献