Mouse primary microglia respond differently to LPS and poly(I:C) in vitro
浏览次数:102 分享:
Microglia, CNS resident innate immune cells, respond strongly to activation of TLR3 and TLR4, which recognize viral dsRNA poly(I:C) and bacterial endotoxin LPS, respectively. However, few studies have thoroughly and parallelly compared functional phenotypes and downstream mechanisms between LPS- and poly(I:C)-exposed primary microglia. Here, we investigated the responses of mouse primary microglia upon LPS and poly(I:C) stimulation by detecting various phenotypes ranging from morphology, proliferation, secretion, chemotaxis, to phagocytosis. Furthermore, we explored their sequential gene expression and the downstream signal cascades. Interestingly, we found that the microglial activation pattern induced by LPS was distinguished from that induced by poly(I:C). Regarding microglial morphology, LPS caused an ameboid-like shape while poly(I:C) induced a bushy shape. Microglial proliferation was also facilitated by LPS but not by poly(I:C). In addition, LPS and poly(I:C) modulated microglial chemotaxis and phagocytosis differently. Furthermore, genome-wide analysis provided gene-level support to these functional differences, which may be associated with NF-κb and type I interferon pathways. Last, LPS- and poly(I:C)-activated microglia mediated neurotoxicity in a co-culture system. This study extends our understanding of TLR roles in microglia and provides insights into selecting proper inflammatory microglial models, which may facilitate identification of new targets for therapeutic application.
详见LabEx网站( www.u-labex.com)或来电咨询!
基因水平:PCR Array、RT-PCR、PCR、单细胞测序
蛋白水平:MSD、Luminex、CBA、Elispot、Antibody Array、ELISA、Sengenics
细胞水平:细胞染色、细胞分选、细胞培养、细胞功能
组织水平:空间多组学、多重荧光免疫组化、免疫组化、免疫荧光
数据分析:流式数据分析、组化数据分析、多因子数据分析
联系电话:4001619919
联系邮箱:labex-mkt@u-labex.com
公众平台:多因子及组学服务专家